Fluorescence emission difference with surface plasmon-coupled emission applied in confocal microscopy
نویسندگان
چکیده
منابع مشابه
Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy
We propose a novel physical mechanism for breaking the diffraction barrier in the far field. Termed fluorescence emission difference microscopy (FED), our approach is based on the intensity difference between two differently acquired images. When fluorescence saturation is applied, the resolving ability of FED can be further enhanced. A detailed theoretical analysis and a series of simulation t...
متن کاملTime-resolved surface plasmon polariton coupled exciton and biexciton emission.
We discuss the coupling between optically excited semiconductor nanocrystals (NC) and thin metal films in both the single and multi-exciton regime. Using time-resolved photoluminescence spectroscopy, we determine the decay dynamics of free space and surface plasmon polariton (SPP) coupled emission. The two dynamics are found to be distinctly different at very small NC-metal separations and at p...
متن کاملThe efficiency of surface-plasmon coupled emission for sensitive fluorescence detection.
Surface-plasmon coupled emission (SPCE) has emerged as a new and potentially powerful tool for highly sensitive fluorescence detection. In the case of SPCE, the fluorescence is collected through a semi-transparent thin metal film deposited on glass. We present a theoretical analysis of SPCE, studying the potential enhancement of the fluorescence collection efficiency, brightness, quantum-yield,...
متن کاملApplication of surface plasmon coupled emission to study of muscle.
Muscle contraction results from interactions between actin and myosin cross-bridges. Dynamics of this interaction may be quite different in contracting muscle than in vitro because of the molecular crowding. In addition, each cross-bridge of contracting muscle is in a different stage of its mechanochemical cycle, and so temporal measurements are time averages. To avoid complications related to ...
متن کاملLow-dimensional carbon spacers in surface plasmon-coupled emission with femtomolar sensitivity and 1000-fold fluorescence enhancements.
We have engineered the use of 2D, 1D and 0D carbon allotropes as spacers to achieve in excess of 1000-fold fluorescence enhancements in a Surface plasmon-coupled emission (SPCE) platform. We also have demonstrated the femtomolar sensitivity of silver decorated carbon dots (AgCD) in the detection of a radiating dipole.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2018
ISSN: 1094-4087
DOI: 10.1364/oe.26.002380